Temporal dynamics of prediction error processing during reward-based decision making

نویسندگان

  • Marios G. Philiastides
  • Guido Biele
  • Niki Katerina Vavatzanidis
  • Philipp Kazzer
  • Hauke R. Heekeren
چکیده

Adaptive decision making depends on the accurate representation of rewards associated with potential choices. These representations can be acquired with reinforcement learning (RL) mechanisms, which use the prediction error (PE, the difference between expected and received rewards) as a learning signal to update reward expectations. While EEG experiments have highlighted the role of feedback-related potentials during performance monitoring, important questions about the temporal sequence of feedback processing and the specific function of feedback-related potentials during reward-based decision making remain. Here, we hypothesized that feedback processing starts with a qualitative evaluation of outcome-valence, which is subsequently complemented by a quantitative representation of PE magnitude. Results of a model-based single-trial analysis of EEG data collected during a reversal learning task showed that around 220ms after feedback outcomes are initially evaluated categorically with respect to their valence (positive vs. negative). Around 300ms, and parallel to the maintained valence-evaluation, the brain also represents quantitative information about PE magnitude, thus providing the complete information needed to update reward expectations and to guide adaptive decision making. Importantly, our single-trial EEG analysis based on PEs from an RL model showed that the feedback-related potentials do not merely reflect error awareness, but rather quantitative information crucial for learning reward contingencies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Choice modulates the neural dynamics of prediction error processing during rewarded learning

Our ability to selectively engage with our environment enables us to guide our learning and to take advantage of its benefits. When facing multiple possible actions, our choices are a critical aspect of learning. In the case of learning from rewarding feedback, there has been substantial theoretical and empirical progress in elucidating the associated behavioral and neural processes, predominan...

متن کامل

Expected value, reward outcome, and temporal difference error representations in a probabilistic decision task.

In probabilistic decision tasks, an expected value (EV) of a choice is calculated, and after the choice has been made, this can be updated based on a temporal difference (TD) prediction error between the EV and the reward magnitude (RM) obtained. The EV is measured as the probability of obtaining a reward x RM. To understand the contribution of different brain areas to these decision-making pro...

متن کامل

Reward Prediction Error Signals are Metarepresentational

Although there has been considerable debate about the existence of metarepresentational capacities in non-human animals and their scope in humans, the well-confirmed temporal difference reinforcement learning models of rewardguided decision making have been largely overlooked. This paper argues that the reward prediction error signals which are postulated by temporal difference models and have ...

متن کامل

The Role of Reward in Dynamic Decision Making

The present study investigates two aspects of decision making that have yet to be explored within a dynamic environment, (1) comparing the accuracy of cue-outcome knowledge under conditions in which knowledge acquisition is either through Prediction or Choice, and (2) examining the effects of reward on both Prediction and Choice. In the present study participants either learnt about the cue-out...

متن کامل

An extended reinforcement learning model of basal ganglia to understand the contributions of serotonin and dopamine in risk-based decision making, reward prediction, and punishment learning

Although empirical and neural studies show that serotonin (5HT) plays many functional roles in the brain, prior computational models mostly focus on its role in behavioral inhibition. In this study, we present a model of risk based decision making in a modified Reinforcement Learning (RL)-framework. The model depicts the roles of dopamine (DA) and serotonin (5HT) in Basal Ganglia (BG). In this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 53 1  شماره 

صفحات  -

تاریخ انتشار 2010